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e
z’h;:é;?;;(;&g\,i;:; gonmc the interpolation points, shown in Figure 8.29b. The degrees
As pointed out by (2, (8‘? 15) are (p + 1)(p + 2)q/2. :
tangential continuity L‘\::\?\g-h" et al, [S.I ], these basis func(ic.m.ﬂ pmvulc‘ (:lcnu:nt»»u»»clcmcnt
order triangular prism L‘!cnm the curvilinear case. The explicit expressions for the pth/first-
1ent are available in the literature [71].

:;g;ezn:lox:l”\';::ﬁa:]CE'::;?\p,:s "l‘n (.Imnunslrmc the pcrfnrm;m'c"c ()fbigher-()rdcr t‘hrec-
electromagnetic wave SL‘ﬂllﬁ-i}, ; consider twu.cxmnplcs here. lhc fl‘rqt example is the
whose depth is 4.0\ [71) Thg ')y ‘“‘" VPOR PRVLRY whose aperture size is 1.0) x 1.0 and
This problem can be anal‘ydehdml‘l-"rC Cmn‘c@es Willi &nt indniely lags grones pl;fne.
ihside the cavity and the hm;ﬁd, .y using the finite element method to formulate the field
and then coupling the interior ‘"2’1 ”“egljﬂl IT?cthod to represent the field outside the cavity
B discussed in detoi) i";l]nc;xlerlor fields by the field continuity conditions. This
exact, any error in the soluti RISk 10. Because the formulation of this method is
> ' ution has to be introduced by numerical discretization. To examine
the accuracy, we consider the radar cross section (RCS) and define the root-mean-square

(RMS) error in RCS as

. N,
1 8
MS | v ; |0 et — Geall?, (8.116)

where O'c:a:l denotes the. calculated RCS and oref denotes the reference solution, both
measured in dB, and NV is the number of sampling points, which are the angles of incidence
here. The .reference solution in this case is obtained using the fourth-order tetrahedral
elements with an overly dense mesh such that the solution does not change anymore when
either the order of elements or the mesh density is increased. Figure 8.30 displays the
RMS error in the monostatic RCS of the cavity as a function of the number of unknowns,
calculated using the first-, second-, third-, and fourth-order vector tetrahedral elements.
It is evident that for the same number of unknowns, higher-order elements produce more
accurate results. For a desired accuracy, the number of unknowns required for the higher-
order elements is much smaller than that for lower-order elements, as expected.

The second example is a circular cavity having the same height and radius. The cavity is
discretized into triangular prism elements. The percentage errors in the computed resonant
frequencies versus the number of unknowns are given in Figure 8.31 for the first-, second-,
and third-order triangular prism elements (the same order is used here for both the transverse
and longitudinal fields). The error is averaged over the first eight resonant frequencies
In general, higher-order elements give better results and converge faster. Asymptotically,
for the pth-order elements the error decreases in O(h?P), as in the two-dimensional case.
However, the accuracy of the results also depends heavily on the quality of the finite element

mesh and the modeling of curved surfaces in this case.

8.7 HIGHER-ORDER HIERARCHICAL VECTOR ELEMENTS

As mentioned in the preceding section, in addition to interpolatory vector elements, there

is another type of higher-order vector element, which is called hierarchical vector element.
This type of element has also been used widely in the finite element analysis of electron}ag-

 netic fields because of its two distinct advantages. First, it permits the use of basis functions
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of different orders in a single finite element mesh, which can facilitate the implementation

Sehn refine ~ ) i N $ t
of ndnp'm% p-refine "|“-;" li- 74]. Second, it provides a foundation in the development
of multigrid n'mi ']“7‘;“;;( ’;"\I\mx or preconditioners for an efficient solution of finite
element equations [75-78]. These two advantages are obtained because in a higher-order

hlo'mn‘!.ncnl c!cnu‘m tihv h:»\'m.x functions include explicitly those of a lower-order element

s section we describe hierarchics b B ey

- ‘ﬂn ]”"] ‘::\t;: A ”: ¢ hll\u.m hical vector basis functions for triangular and tetrahe-
' sments based « > Wor ' We

sy 3 ¢ work by Webb [56]. A systematic formulation is also presented

by Zhu and Cangellaris [78].

8.7.1 Scalar Hierarchical Basis Functions

Because this is the first time we touch the topic of hierarchical basis functions. we start with
SC&IE}T ones because they are relatively simple and easy to underﬂ‘ta;nd althnu\ .h the a’ : t
as v.vxdely ubsed as interpolatory basis functions discussed in Chépters‘?»—s Tﬁe hiez if;ﬂ"‘
basm. functions constructed for finite element analysis have to sati;f tﬁ f 'a ¢ dis
requirements: sfy the following three
1. They should be. linearly independent and complete to the desired order. Therefore
the number of hierarchical basis functions for a given order is the same aé the numbe\:

of interpolatory basis functions.

h i i
T eyt ‘ih(?uldhmakc.a 1t easy to enforce the interelement continuity for the expanded
qua? ity in the finite element formulation. The interelement continuity refers to the
continuity at the nodes, across the edges, and across the faces of the elements.

3. The basis functions qf a given order should explicitly include those of lower orders.
In otl'-ler words, the hierarchical basis functions of order p should retain all the basis
functions of order p — 1 and then add a few new ones necessary to make them

complete to order p.
The first two requirements are the same as those for interpolatory basis functions. It is the

third that distinguishes hierarchical from interpolatory ones. In fact, these requirements are
less restrictive than those for interpolatory basis functions. Consequently, there are many

more choices in formulating hierarchical basis functions, as illustrated below.

8.7.1.1 Line Element Consider a line element, whose two end nodes are labeled as 1
and 2 with the associated simplex coordinates denoted as £, and &, which are related by

& + & = 1. The first-order hierarchical basis functions are simply

Nl L el 8.117)

which are the same as the first-order interpolatory basis functions. The second-order
hierarchical basis functions consist of those in (8.117) and a new one
(8.118)

N3 = 162,

order term. Note that this function vanishes at nodes
continuity at these nodes. To
1d retain those in (8.117) and

third-order term. There are

which contains the necessary second-
1 and 2, hence its inclusion does not affect the interelement

ms,tmct the third-order hierarchical basis functions, we wou
(8.118) and add a new function that contains the necessary
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os are £2€, and £1€3, both of
ar combinations as long as th,
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f such combinations is

(8.119)
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d the obvious on

choose their line
function. One O

EZ)a

Again, this function vanishes at node
ntinuity. Following this appr()achs
of any order, just by addiné
,p=1)er their linear

his new function, an

and 2. We can also

several choices for tl
he order of the

which vanish at nodes 1
do not reduce t

combinations
Ny = &162(8

along the element.
jterelement €O

jical basis functions
C(] p«"(] e ¢
Q'IEZ ((] ot I,Z,...

which yields an odd function
not impact the i

nd 2 so that it does
construct hierarcl

| a
systemmically
ns any of the terms

we can
a new function that cont

combinations, such as
e, -2
NyH—l ’&162(61 ’52)7) .
+ 1 basis functions.

ai

ierarchical line element has p
denote the simplex coordinates of g

Clearly. a pth-order h
+ &+ &3 =1 The first-order

8.7.1.2 Triangular

triangular element (Fig.
hierarchical basis functions are simply
(8.121)

Nzn:é-'l, i:1,2,37
rst-order interpolatory basis functions. The superscriptn denot
es
s. The second-order hierarchical basis

Element Let &1, &2, and &3
4.3), which satisfy the relation &1

which are the same as the fi
that these basis functions are associated with the node

functions consist of those in (8.121) and three new functions:
ei26 L
Ve )= (1,2),(2,3),(3,1),
script e denotes that these basis functions are associated with th
e

where the first super
edges, the seco i
nd superscript 2 denotes the order of the basis function, and the sub
. itk e subscript
he basis function. The superscriplzs

] . N e 2

continuity can easily be enfo

3 d. The third- : .

those in (8.121 A% ird-order hierarchical basi '

( ) and (8.122) and another three new functions assziiszllieilum?g?n; Famh
with the edges:

(@ =lae)ei8) @iy (8.123)

(8.122)

e;3 144
. N7° =& (&6 — &)
imilar to the case of a line el
i element, there are many other choi
in the necessary third-order terms and theylc\:/zil'tht?t T e
ish at all the nodes and

all the edges exce
pt for the associ .
enforcement of int; ciated edge (i, ) so th i
erel R ’ at thei :
(8.122), and (8.123) E(r)r‘ljnt continuity. So far, we have ni;euls)e QOeS Rat complicate the
; ever, a third-order triangular elementa:IIIS flllél(;:lons in (8.121),
ould have ten linearly

independent basi i
sis functions. The tenth basis function is oi
s given b
Nbdy )
123 = §1&263,

where the superscri

A ai)talfldt:;otes that this basis function is associ

systematically construct hi nOd?S and all the edges. F llsso.C iated with the face. This

flmuar (o an inte:rpolatoryecr:llrchlcal basis functions (;f anO owing this approach, we can

n()) ((ﬁ :—32(‘)0/ 2 linearly indepen(eizzng;: Ptfh-or(.ier hierarchi)(]:zﬁrlc:lrzlfoala T e

face »3(p—1) are associated with th 1S Tunctions, of which thre o elerr'lent pasipts
: e edges, and (p — 1)(p — 2) 72are associated with the

are associated with the

(8.124)
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R AR mtthdI‘GI Element '|A"|N‘ approach just described can be used easily to con-
struct hierarchical basis functions for a tetrahedral element (Fig. 5.1). The first-order
hierarchical basis functions are
N =& 1=1,2,34, (8.125)
which are the same as the first-order interpolatory basis functions. The second-order
hierarchical basis functions consist of those in (8.125) and six new functions:
(4,J) = (1,2),(1,3),(1,4),(2,3),(2,4),(3,4) (8.126)

e,2 o

Ny =SSy

for the six edges. The third-order hierarchical basis functions consist of those in (8.125)
and (8.126), another six edge-associated functions: : il

NP P T ol B o s N :
N = &:&; (& &5) (I,J)—(1,2),(1,3),(1,4),(2’3)q(2. 1),(3,4) (8.127)

4 7‘7
four face-associated functions:

AV oy
Ny = &€k (@ 95k) =1(142,3)4i(1,34), (1,4,2)4:(2,4,3),

7k

and
(8.128)

one for each of the four faces. Note that ijz vanishes at all the nodes, all the edges, and
all the faces except for the face defined by nodes (i, j, k). So far, all are the same as for a
triangular element. However, a tetrahedral element is different from a triangular element
when its order is greater than 3. For example, a fourth-order tetrahedral element would
contain, in addition to those associated with the nodes, edges, and faces, a basis function

Nysas = E1€2€séa (8.129)

associated with the volume of the element, which vanishes at all the nodes, all the edges,
and all the faces. Similar to an interpolatory element, a pth-order hierarchical tetrahedral

element has (p + 1)(p + 2)(p + 3)/6 linearly independent basis functions, of which four
are associated with the nodes, 6(p — 1) are associated with the edges, 2(p — 1)(p — 2) are

associated with the faces, and (p — 1)(p — 2)(p — 3)/6 are associated with the volume.

The numerical implementation of the finite element method using scalar hierarchical
with interpolatory basis functions because the

basis functions is nearly identical to that
If we want to use hierarchical

s functions are similar in both cases.
in a single mesh, all we have to do is to enforce the

basis functions of different orders
interelement continuity between two neighboring elements that have a different order. This
functions on the edges and faces in the

can be done by simply removing higher-order basis
higher-order element that are shared by the lower-order elements.

arrangements of the basi

8.7.2 Separation of Gradient and Rotational Basis Functions
ing hierarchical basis functions from the scalar

Jearly the issue of mixed order versus full order

Before we extend the approach to formulat
feature of the Nédélec vector basis

to the vector case, let us first discuss more ¢

in a vector element. As mentioned earlier, a distinct s
functions is that these functions are of mixed order. The variation of these functions 1n

 the direction of the vector is one order less than the variation in the direcFion normal to the
- Vector. This mixed-order formulation makes the basis functions more suitable to represent
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sctric and magnetic fields, and enl
jucing the number of basis functions.

the divergence free ele
consider a vector

element solution by rec
To see this more clearly,

element in Figure 8.12. Itis rathe
edge that connects nodes (

and satisfy all the requirements
ivial divergenc However, we can construct othe
5 o

Pairg of

e nontri
asis functions

triangular element in Figure 8.2 or a tetr.

r obvious to see that fully linear vector basig “:"h"—flml

associated with the and j consist of £;VE; and £,V ¢, w;”‘-‘"m;
for vector basis f'llncti()n;"f[,h:.l’("h are
-5€ "Nr,

linearly independent
e and curl.

functions hay
linearly independent b from their linear combinations. In particul
\ o ar, ¢
wing two combinations: » CONSider

Wiy = V& — &iVEi
Vi =&iV& + E:VEi,

first combination yields a rotational or a solenc;
cond combination can be written as a Pu;e genzxdal
radient

the follo
(8. ] 7)())

(8.131y

which are linearly independent. The
function because V - W; = 0. The se

function
Vi = V(&&), (813
(8.132)

which is irrotational because V x V;; = V X V(E.L:) =
a ‘ J (6252) — 0. Both W ,
ﬁeign]g,ﬂi;i Vf‘i;it;rgz;ass;svthatd can be used to represent a vector ﬁlélg,ncsla\yf itjhsun i
BT tha;t o ij oc.es not contribute to the representation of V XeEel?Ctric
number of basis functionsp 'esentatlons of E and V x E become more balanced e
mixed first-order (or an i is reduced. Consequently, only W;; remain e el the
r an incomplete first-order) because W isj constani’i: EChdfonnS g
e direction

s S S :
g ffgl to 1ts. direction and linear in the normal direction
iscussion also su :
Th ggests a general approach to separating gradient basi
asis functions

from a com
plete set of basis functi
A s ctions. The first step is t
of order : DO take the gradi
step is to remove the grzﬁi;nltt;) O_btz;ln the gradient basis functions ogf :fciem or"i‘the e
e asis functi erp. Thes
p. The remainin : ons from the full , econd
g parts ar . vector ba :
p e either rotational functions or rotational lislis iunctlons of order
-like functions because

they ar i
y are dominated by rotational functions

8.7. i
3 Vector Hierarchical Basis Functions

We are now
ready to develop hi :
These basis functions shouldiﬁiz;ariillcal vector basis functions for fi
. y the followin any finite elements
g three requirem '
ents:

1. They should be li
be linearly i
e y independent and ¢
¢, the polynomials omplete to the desi
}Vhereas na mixed-orderc should be complete to the desired S 9rder. Fn a full-
s reduced by 1 ase, the order of the polynomials i tﬁrder gl groctons
: in the tangential direction

2. They sh
ould make it
eas
ex ytoe :
copzfndc'ed vector in the finite nfl'orce the interelement tangential Sl
ntinuity refers to the ta element formulation. The i BliBorifnuity for
elements. ngential continuity acros .th e interelement tangenty
s the edges and the faces of the

R E——
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3. The basi ; f o i
And c::“; Z'U:(f:g::c(:l ;1 glvm]\ order sh(lmld explicitly inch‘ldc those of lower orders
ks them Com-p.‘etc "t; 1:1“§ y' by adding a few new basis functions necessary to
B .. . e desired order.
iedin fOl‘mui:ti:; \i;‘::‘: :1!crarch?cnl hus‘is functions, there is an unlimited number of
PR b ttions have b, r ncmrc;hlcnl basis functions. In fact, many vector hierarchical
n proposed in the past—presented below is just one of the many.

8.7.3.1 Triangular

tor basis fun Cti%ns_ lef,\??ﬁer’:: idBCfO‘l‘c we construct specific gradient and rotational vec-

given order, say p. For a trian\ul f’vl\lhiy the cpmpletc set of vector basis functions for a

(&1, &2, €3), there are two t iyl (F.‘g- 8.2) characterized by simplex coordinates
ypes of basis functions. One is associated with the edges, which

consists of

Py (&, 65)6VE; + Pa(&:i,85)E;VE, (8.133)

for edge (2,7), W !

3(p+f) Sslcﬁ)lineﬁl;eiﬁeandf > are polynomials of degree p — 1. Altogether, there are

e pendent functions. These functions have a tangential component
YV aonE. S 8¢ (1, J ) The other type, which occurs when p > 1, is associated with the

face, which is the interior of the triangular element. These basis fuglctions have the form

Pi(&1,&2,83)8283VE + Pa(€1, &2, 63)E361VE + P3(£&1,62,83)6162V &3, (8.134)

v.vhere Rl, P,, and P are polynomials of degree p — 2. Among the three, only two are
linearly independent; hence altogether there are (p — 1)(p + 1) such linearly independent

functions. These functions do not have a tangential component along any edges.
Now to construct the first-order vector basis functions, we take the gradient of the
order scalar basis functions in (8.122) to first find the gradient basis functions as

second-
(8.135)

NgEl = V(&)  (64)=(1,2),23),3D),
cript g stands for gradient. We then remove them from the complete
first-order vector basis to find the rotational basis functions as

Nz?.;'r’l 3 &ij S £Jv€1 (IL’-?) 5 (17 2)7 (2a 3)7 (3, 1)a

tional or rotational-like. The functions in (8.136) are
d when combined with those in (8.135) form the

where the supers
(8.136)

where the superscript r stands for rota
the mixed first-order basis functions an:

full first-order basis functions for a triangular element.

To construct the second-order vector basis functions, we take the gradient of the third-
order scalar basis functions in (8.123) and (8.124) to first find the gradient basis functions
as

Nz;'g’z = V[&ﬁ](é"t i 5,7)] (7"]) 5 (1’ 2), (21 3>’ (3’ 1) (8'137)

k)= 8.138

- N2 = V() 03k = (LB (8.138)
We M remove them from the complete second-order basis t0 find the rotational-like basis
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Nt of the

gis, whic
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37) and (8.13
't the third-0
tions to first fin

&)’

R) are remove

rder vector

d the grac
(i, 4) = (1,2),(2,3), (3,1)

(i, 7, k) = (1,2,3),(2,3,1). (8.14
A )

functions in (8.1
Similarly, 10 construc

fourth-order scalar basis func
2,3 - .
N;,g o V,iri)(&

NiE = V[6igié (6 — &)
yields the rotational-like basis f,
Unc-

e from the complete third-order basis

”Hf»u,,

Removing thes
.? '7 k; e 1,2, & 2 a9\
(i,5,k) = ( 3),(2,3,1),(3,1,2). (8.142)

tions as

NER® = 68 (65 V6 = 6 V)
8.142) form the full third-order basis, which is reduced
to

The basis functions in (8.135)—(
the mixed third-order when the gradient basis functions in (8.140) and (8.141) are re
n be extended to construct hierarchical vector basis functionrzofved‘
xed-order. For a full pth-order element, th;:reogri

This approach ca
the corresponding mixed-order element, the numb
4 er

triangular element of any full- or mi
(p+ 1) (p + 2) basis functions, and for
of basis functions is reduced to p(p + 2).

8.7.3.
= n?’eit (;?trashedral EIem?nt A complete set of vector basis functions for a tetrah
ig. 8.12) characterized by simplex coordinates (&1, &2, &3, &4) consists fegrral
) ) ) of three

types of functions. The first type is associated with the edges and consists of
Py (&,6)&VE + Pa(&,€5)6 VEi (8.143)

for edge (4, 7), where P,
»J)> , and P, are polynomial
6 1 ! : y ials of degree p — 1.
: $y+alg nsuci:l:i hneajrly'/ independent functions. These functionszilave a tl:itogelfher, ks
g edge (i, 7) and on the two faces joined by the edge. The sfc?(r)m;l o
: nd type, which

occurs when p > 1, is associated with the face and has the fo
rm
Pl (é‘ia 6 E) € ] ;
32 €6)E6i€kVEi + Pa(6iy €5, €0)EREVE; + Pa(&i, &5, €166 VER (8.144)
) 2SS9 .

for face (4, j, k), wh
,J, k), where P;, Py, and P-

e R ' L9, 3 are polynomials of degree p —

such linearly indepgnt;l:;pfendeflt on each face; hence altoget%leretﬁer & Air(long N thaes

along any ed unctions. These functi eared(p—1)(p+1)

ges and o ions do not h :

when p > 2, is associa:; ;n){ faces except for face (6,4, k). T ;‘Zet ; tgngentlal c.omponent

with the volume of the tetrahedral elemerlli t}c]lp}?, ish osee
and has the form

P
1(51,52,53,64)§2§3£4V€1 + Pao(61, &, €3, €4) 3846, VE
+P3(€ ?67 g pan
1,& 53,54)€4§1€2V53+P4(§1,§2,§3,€4)§1§2€3V€4, (8.149)

where P}, P
- * 52 P 3 and P
are linearly inde 4 are polynomial
‘dent; hence altogether there arge (;p 2)?2' Afil)o(ng the four, only three
—2)(p — 1)(p + 1)/2 such linearly

independent fy
nctions. Th
ed -~ *hese functi
ges and on any faces, unctions do not have a tangential |
component along any
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To construct the first-order vector s
t the fi I vector basis functions, we start with the second-ord i
; ! ~order scalar

basis fun s i i
ctions in (8.126) and take the gradient 1o fiyyg the gradient basis functions
i ne as

NG*' = V(&) (i,4) = (1,2), (1,3 (1,4), (2,8
Y § . ' i s v( ¢ : . / ’2, : :
We then remove them from the complete first. U S5
functions as St-order ve

NG S &VG =GV (46d) = (1,9),1,8), (1, 4), (2

X A o ’ $9J)y ¥ ,(‘3"2' W
which are the mixed first-order vector basis functi 2,3),(2,4),(3,4), (8.147)
consist of those in both (8.146) and (8.1 47)' ctions,

To construct the second- ;
order vector basis functions, we take the gradient of the third-

order scalar basis functions in (8 127) ai
: nd
(8.128) to first find the gradient basis functions

ctor basis to find the rotational basis

The full first-order basis functions

N(?Zg’2=V1;‘i—— . P
) [§:&5 (& — &5)] (4,9) = @,2), (1,3),(1,4), (2,3),(2,4), (3,4) (8.148)

*..’,g’2 — V % $5 0
Nk (&&8k)  (i,4,k) = (1,2,3),(1,3,4), (1,4, 2),(2,4,3). (8.149)
We then remove them from the complet, .
R plete second-order basis to find the rotational-like basis

Nfﬁf =& (& V& — &, VEL) + §i(§xVE; — €V Er)

21,2,3),(2,3,1)

5l g N STA SSRAST

(Z,J,k) e (1’4,2)’ (4’2’1)) -
(2:4:3)5(4.3;2)

with two on each of the four faces. The basis functions in (8.146)—(8.150) form the full

second-order basis, which is reduced to the mixed second-order when the gradient basis

| functions in (8.148) and (8.149) are removed.
’ Similarly, to construct the third-order vector basis functions, we take the gradient of the

fourth-order scalar basis functions to first find the gradient basis functions as
? = V[Ei;(& - &2 (6,4)=(1,2),(1,3),(1,4),(2,3),(2,4),3,4) G151

(8.150)

4 (1,2:3), (2:8,1)

- h8 (1,3,4),(3,4,1)

= V[€&stn (& — &)l (i3, k) = | (14,2), (4,2.1) (8.152)
i 2,4,3), (4,3,2)
AR (i,4,k,0) = (1,2,3,4). (8.153)

complete third-order basis yields the rotational-like basis func-

(1,2,3),(2,3,1),(3,1,2)
(1,3,4), (3,4, 1),(4,1,3) (8.154)
(142,420, &LY)
(2.4,3),(4,3,2,3:24)

1) (25,41, 8,402

?

(8.155)
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8.7. i i
7.4 Orthogonality of Hierarchical Vector Basis Functions
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Although this onlmg(’“““’“'i"‘“ S be performed on each element, doing 5o would result
in different basis f‘m\clit‘““""r different elements, which would make it difficult, if not
jmpossible. to enforce the |.n|erclmnom continuity., Therefore, this nﬂhngnnnhl;ﬂkm 18
asually performed on an cqmlf\wml element., The resulting basis functions are orthogonal on
this element, but only “PP“‘«‘“““"—“}’ SO for elements that are not equilateral. Nevertheless,
when most elements are close to equilateral ones, the orthogonalization can still significantly
improve the condition of the resulting finite element matrix., : ;

There are many ways to pcrfnrm. orthogonalization on higher-otder hierarchical basis
functions. By using the Gram-Schmidt orthogonalization method. Webb developed a set of
orthogonal hierarchical basis functions for an equilateral tetrahellml element complete to
order 3 [56]. For convenience, we present all the basis functions here even though some of
the basis functions have to be repeated. The index combinations are omitted because they
are the same as those in SecFion 8.7.3. Instead, we denote the number of basis functions
generated from each expression in the parentheses behind the expression. The orthogonal
pasis functions for-an equ}lateral triangular element can be extracted easily from the results
given because a trlfingle 1§ simply one of the four faces of a tetrahedron. For each order,
only additional basis functions are given, and it is understood that the complete set includes

these additional functions and all the prior functions.

Mixed first-order:
N5™! = V¢ — Ve (6)
Full first-order:
NGE! = V(&g) ()
Mixed second-order:
Nf;-rk’z = & (£xVE — &VE) + E(€xVE — §VEK) (8)

Full second-order:
NgE? = Vet (& - &) ©)

NDE2 = V(&:gi6k) ()

ijk

Mixed third-order:
£6.3 — 699V [€:ik (&5 — &)] +2719(& — ¢;)&i&;VEk

ik
+86£,(&:VE — ¢;véE) (12)
(&0 + 365)VE + £.€;(€e + 3&k)VEk (1)

WoliBa: ﬁjék(él T 3§¢)Vfi + Ek&i
- £ 08 ()

Nijke
NG = kel Ve~ 6VE) T £i€e(€xV

NS = giti(eve — &6V )

_ 30i¢; — 2)] (6)

~d-orader: :
&3 — V[gt; (1567 + 156

N;;
= V[&iﬁjﬁk(ﬁi — 33

ﬁas = V(ﬁzﬁjgk&) (1)
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Another m'thngnnnlimlinn was prnpusod by Sun et al. [57] also for an equil;
tetrahedron by using the reduction of the number of negative eigenvalues and the ‘-,m';"‘rul
i . . 2 & . . . (
number of the system matrix as criteria. This results in a set of somewhat dm”“"'
i ere
orthogonal basis functions: rent
Mixed first-order:
N:’j' - fiVE,; (,V{, (6)
Full first-order:
il o §
thj = V(fifj) (6)
Mixed second-order:
nh2i . :
Nk = & (EVE — &VEk) + &(ExVE; — £VE) (4)
% o R
NiR? = & (Ve — &veE) (4)

Full second-order:
N5 = Vigg; (& — &) (©)

NE82 = V(&&8) (4)

ijk

Mixed third-order:
NEES = (& — G)66VE + (6 — E)86VE + (6 — &)68 Ve (4)
NEES = (80¢; — 2126, + 3936)6;6xVEi + (2126, — 80& + 393,)646: Ve,
—292(&; — &;)6:€i Ve (4)
N;2° = (186¢; — 1246, — 1316:)€;6x V& + (1248, — 1688 + 393;)€k&: V¢,

—(44¢€; + 44¢; — 2626,)E:6;VE,  (4)
N5y = 66 (6 Ve — E0VER) + Ek6e(§VE — &Y€) (1)
N2 = Gl (6 Ve — 8 VG @)
N57 = 666 VE - £VE) (1)
Full third-order:
NEE* = V[¢¢;(362€7 + 3627 — 504¢:¢; — 1176, — 117¢; — 16)]  (6)

f.g,
N2 = Vgt ien(6 + & — 28k)]  (4)

f.g3 _
N = VIE&a (& - &) (4)
NY:&3 _
$okbi T V(&ifjfké‘!) (1)
The development
of orth i
ogonal higher-order hierarchical vector basis functions contin-
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