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Quadrature formulas of degrees 4 to 8 for numerical integration over the tetrahedron are constructed.
The formulas are fully symmetric with respect to the tetrahedron, and in some cases are the minimum
point rules with this symmetry.

1. Introduction

In [4] Jinyun has described formulas for numerical integration over the three-dimensional
simplex, or tetrahedron, with polynomial degrees 2 to 6. The formulas possess full tetrahedral
symmetry, thus making them attractive for use in finite element codes, where it is clearly
preferable that the orientation of the tetrahedral elements should not affect the distribution of
the quadrature evaluation points. Although previous formulas also possessed these symmetry
properties, they had other disadvantages such as the use of excessive numbers of function
evaluations (e.g., [7]) or availability only for low degree (e.g., [3,9]).

The rules in [4] were computed by first postulating a structure for the quadrature rule, and
then attempting to solve the nonlinear moment equations for the evaluation points and weights.
The purpose of this note is to demonstrate a systematic method for deriving valid rule structures
and for computing the corresponding formulas.

The technique used is described more fully in [6]. Another systematic method appeared in
[2]. The formulas obtained by Jinyun will be given as special cases here, and some formulas will
be obtained using fewer points. We will list valid structures for rules of degrees 1 to 10, and will
compute formulas of degrees 4 to 8.

2. Derivation of formulas

Following the notation of [5, 8], let T(«,, a,, a;; a,), o, =0, Z?=1 a; =1, be a functional
defined by

ey, a;, a3; a)f(x, y,2) = 2 f(ail, Q;

L= ]
11,582,103

> ais) s

the sum being over all choices of (a; , @, , ;) from a,, a,, a;, a,. This gives a sum of values of f
over a set of points possessing the same symmetries as that of the tetrahedron.
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A tetrahedrally symmetric quadrature formula has the form
K o
Of =2 wT(a)f .
i=

We use the word rule to refer to a quadrature formula, and call (e, a,, a;; a,) a basic rule.
Thus a tetrahedrally symmetric rule is a weighted sum of basic rules of type T.

DEFINITION 2.1. If (a,, a,, a5, a,) has k distinct nonzero a, with n; occurrences of the
ith a, we say that T(a,, a,, a,; @,) is of class [n,, n,, ..., n.].

Note. In three dimensions, with the constraint X @, = 1, there are only 11 different classes of
basic rules, viz. [4], [3,1], [2,2], [2,1,1], [1,1,1,1], [3], [2,1], [1, 1, 1], [2], [1, 1], and [1].
There is only one possible rule of class [4], viz. T(}, §, %; %), and only one possible rule of each
of the classes [3], [2], and [1], namely T(3, 3, 5;0), 7(3, 3, 0; 0), and T(1, 0, 0; 0), respectively.
The cost of a rule of class [n,, n,,...,n,]is 4!/n!n,! - nt(4—- X n;)!, and the number of
free parameters associated with the basic rule is k, namely (k — 1) independent parameters «;
and the weight of the basic rule.

Following [6], we can derive consistency conditions for the formula to be of degree N. These
consistency constraints are linear inequalities to be satisfied by the structure of the formula to
ensure that the rule can be of degree N. Rather than reproduce the arguments leading to these
constraints (which are given in [5, 6]), we give an example with a specific degree. These.
constraints are necessary and sufficient conditions to ensure that the nonlinear equations for the
weights and the a do not satisfy any linear relationship. The hazards of nonlinear relationships
and complex solutions remain.

First, we give the conditions a rule must satisfy to have a specified degree. From [2] it is
possible to show the following theorem.

’
1
2

THEOREM 2.2. For a rule which is simplicially symmetric to be of degree d over the simplex
0<x,y,z,x +y+ z <1, it is necessary only that it integrates exactly all polynomials of the form
XyzZ(1-x—y—-2) for2i+j+k<dwithi=j=k=0.

Now, consider the construction of a rule of degree 5. The polynomials to be integrated are

2.2 2.2

1, Xy, xy”, xyz , xyz, xyz(1—-x—y—2).

Thus, a formula of degree S must integrate six polynomials exactly. Let K[n] be the number of
basic rules of class [n] used in the formula. Then there are consistency constraints (derived in
[5]) on the numbers K[n] for the formula to have degree 5. In this case, the constraints are
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1 06 0 0 0 0 0 0 0 0 0 K[1] 1]
o 1.0 0 0 O O O O 0 O K[2] 1
o o 0 1. 0 O O O O 0 O K[1,1] 1
o 0 0 0 0 0 1 0 O O O K[Z’,] 1
-1 -1 -2 -1-2 -3 -1 -2 -2 -3 —4 K[2,1] -6
0 0 0-1-2-3-1-2-2-3 -4 K[l ’1 1 <|-3
o 0-2 0 0-3-1-2-2-3-4 K[:l], -1
o 0 0 0 0 O0-1-2-2-3-4 K[3,1] -1
0 -1-2 0-2-3 0 0-2-3 -4 K[2,2] -1
-1 0 -2-1-2-3 0-2-0-3 -4 K[2 ’1 1] -3
6 0 0 0 0 -3 -1-2-2-3 -4 K[l ’1 ’1 1] -1
0 0 0-1-2-3 0-2 0-3-4]] "7 "7"] -1

The cost of a formula with K[n] rules of class [n] is

f(K)=4K[1] + 6K[2] + 12K[1, 1] + 4K[3] + 12K[2, 1] + 24K[1, 1, 1] + K[4]
+4K[3,1] + 6K[2,2] + 12K[2,1,1] + 24K[1,1,1, 1] .

It is then a simple matter of solving the integer programming problem for the vector K which
minimizes f(K). Successively weaker minima may be found by adding the constraint f(K) =
previous minimum + 1. The minimum point rule of degree 5, which is given, has the form:

K[3,1]=2, K[2,2]=1.
That is, the formula is:
wT[a, a, a; B+ w,T[y,y,v; 8]+ wiT[A A, ps u],

where 3a + B =3y + 8 =2A+2u =1. This formula is given in [2] and uses 14 points. The
formula given in [4] uses 17 points and comes from the third optimum. The second optimum
produces a rule using 15 points, which is listed in Section 3, and appears in [2].

The structures of the minimum point rules for degrees 1 to 10 are given in Appendix A. In the
next section we list the rules of degrees 4 to 8.

3. Tetrahedral formulas of degrees 4 to 8

In [2] formulas of degree 2s + 1 are obtained for the n-simplex, using (n + s + 1)!/(n + 1)!s!
points. For n = 3 and s = 1 this gives a formula of degree 3 using 5 points (the formula given also
in [4]) and for s = 2 this gives the degree-5 rule in [4]. Appendix A shows structures with fewer
points than the rules in [4] for several degrees. In Table 1 we give formulas of degrees 4, 5, 6, 7,
and 8. There are two formulas of degree 4, one of which has a negative weight, using 11 and 14
points, respectively. The formula in [4] uses 16 points. The formula of degree 5 appears in [2].
Another formula of degree 5, with the same structure as the one in {2], appears in [8, p. 315].
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As far as we know, the formulas of degrees 4, 6, 7, and 8 are new. The presence of negative
weights in the formulas of degrees 4, 7, and 8 causes no serious problem, since in both cases the
sum of the absolute values of the weights when applied to f =1 is less than 5, indicating that the
round-off error accumulation is minimal. (see [1, p. 208], where it is shown that the relative
round-off error is bounded by the sum of the absolute values of the weights.)

Appendix A

Feasible structures for simplicially symmetric formulas over the tetrahedron are listed. A set
of 15 integers is given for each structure, namely,

N, i, j, K[1], K[2], K[1, 1], K[3], K[2, 1], K[1, 1, 1}, K[4], K[3, 1], K2, 2], K[2, 1, ],
K[1,1,1,1], M,

where:
N is the degree of the formula;
i represents the ith consecutive optimum structure;
j represents the jth equal cost structure at the ith optimum,;
K are the rule structure parameters;
M is the cost of the formula.

=
X

W W W WRNNNDNDNNDNNDREDN = = 2 e
NN AU SEEWONNNRFRUMUE RAWWWRDNDDNDND -
WOBRD = b= B WRD e DN = = WA P = RN = RN WER = W N e = |~
OO OO0 R OOOCCOR OCOOODODOOO~OO~RO
QOO0 OO=ROOOOOOROROOOOO0OC0O
[ I e B B e B o B B e B e B e B e Y I e B e Y e Y e Y e B cne R o I e i e Y e B B s B s i o i e}
OR OO OFROOCOR OO OO=ROOROO
[ I e B e B o B e B e B e B e B i e Y e R v Y o Y e Y e i o Y e Y s B i s Y e B . e Y i e e
COOR OO0 R R ORFRMEMROERMEMODORPR P EFHEFOOO =
NR R RNEROOOOOO~OO=SOO00O0O R OO~ OOoOO
CO 0O OOOROROOOoOOROROOoOOOOOCCO
e B o B e B e i T o Y o i e R o Y e Y e Y o R e B e B e, B o B e i e e N o B o T s B <o 2 con i e R e
OO OO OOOOW-I~ITAAWUMUNWUPAIITOAONNNUNWVE A B =
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N i@ K M
9 5 5 1 0 0 0 1 0 1 4 2 1 0 57
9 5 6 0 60 0 1 1 0 1 4 2 1 0 57
9 s 7 o 0 1.0 0 0 1 5 2 1 0 §7
9 5 8 0 0 0 0 1t O 1 5 2 1 0 57
9 5 9 11 0 1 0 O 1 3 1 2 0 §7
9 510 1 1 0 0 O O 1 4 1 2 0 57
9 s11 0 1 0 1 O O 1 4 1 2 0 57
9 512 0 1 0 0 0 O 1 5 1 2 0 57
9 53 1 0 0 1 0 O 1 3 2 2 0 57
9 514 1 0 0 0 0 0 1 4 2 2 0 57
9 515 0 0 0 1 O O 1 4 2 2 0 57
9 516 0 0 0 0 0 0 1 5 2 2 0 §7
9 717 1 0 0 1 O O 1 3 0 3 0 57
9 518 1 0 0 0 0 0 1 4 0 3 0 57
9 519 0 0 0 1 0 O 1t 4 0 3 0 57
9 52 0 0 0 0 0 O 1t 5 0 3 0 57
9 521 0 0 0 0 0 O 1 2 2 3 0 57
v 1 1 0 0 O O O O O 5 2 3 0 68
w2 1 1 0 0 0 O O t 4 2 3 0 69
2 2 0 0 0 1 0 0 1 4 2 3 0 69
0 2 3 0 0 0 0 0 0 1 S5 2 3 0 69
o 3 1 0 0 0 0 O O O 4 3 3 0 7
4 1 0 1 06 0 0 0 1 4 2 3 0 7
0 4 2 0 0 06 0 0 0 1 4 3 3 0 7T
0 4 3 0 0 0 0 0 0 1 4 1 4 0 N
w s 1 1 0 0 1 0 0 0 4 2 3 0 72
0 5 2 1 0 0 0 0 0 O 5 2 3 0 72
s 3 ¢ 0 0 1 0 O 0 5 2 3 0 72
0 s 4 0 0 0 0 0 0 0 6 2 3 0 72
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